- 1. Let A, B, C be non-empty sets and let $f : A \to B; g : B \to C$ and $h : A \to C$ be functions with $h = g \circ f$ (composition). Prove or disprove the following:
 - (a) If f, g are surjective then h is surjective.
 - (b) If h is surjective then f, g are surjective.
 - (c) If h is injective then f, g are injective.

Solution:

- (a) Given that f, g are surjective
 i.e., f(A) = B, g(B) = C. This implies that h(A) = g(f(A)) = g(B) = C
 Hence h is surjective
- (b) Consider $A = \{a, b\}, B = \{1, 2, 3\}, C = \{\alpha, \beta\}$ and f, g be defined as $f(a) = 1, f(b) = 2, g(1) = \alpha, g(2) = g(3) = \beta$. Then h(A) = C. i.e., h is surjective. but $f(A) = \{1, 2\} \neq B$. i.e., f is not surjective.
- (c) Consider A, B, C, f, g as in (b) $h(a) = \alpha, h(b) = \beta$ implies that h is injective but g(2) = g(3). Hence g is not injective.

$$\square$$

2. Let $X = \{1, 2\}$ and let M be the set of all integer valued functions on X. Show that M is countable.

Solution: Let $X = \{1, 2\}, M = \{f : X \to \mathbb{Z}\}$ Note that $h : M \to \mathbb{Z} \times \mathbb{Z}$ defined by h(f) = (f(1), f(2)) is a bijection with inverse given by $h^{-1}((m, n))(1) = m, h^{-1}((m, n))(2) = n$ for $(m, n) \in \mathbb{Z} \times \mathbb{Z}$. Hence it is enough to show that $\mathbb{Z} \times \mathbb{Z}$ is countable.

Note that $\mathbb{Z} \times \mathbb{Z} = \bigcup_{n \in \mathbb{Z}} \{n\} \times \mathbb{Z}$. That is $\mathbb{Z} \times \mathbb{Z}$ is a countable union of countable sets. Hence $\mathbb{Z} \times \mathbb{Z}$ is countable.

3. Show that given any real number x there exists a natural number n such that n > x

Solution: Let $x \in \mathbb{R}$. Assume that $n \leq x$ for all $n \in \mathbb{N}$. Therefore x is an upper bound of \mathbb{N} . Therefore by completeness property, \mathbb{N} has a supremum $u \in \mathbb{R}$. Then u - 1 < u. Therefore u - 1 is not an upper bound of \mathbb{N} , so there exists $m \in \mathbb{N}$ such that u - 1 < m. This implies that u < m + 1. But since $m + 1 \in \mathbb{N}$, this contradicts the fact that u is an upper bound of \mathbb{N} . Thus there is a $n \in \mathbb{N}$ such that n > x.

4. Suppose $u: [0,1] \to \mathbb{R}$ is a continuous function. Define a function $v: [0,2] \to \mathbb{R}$ by

$$v(t) = \begin{cases} u(t) & \text{if } 0 \le t \le 1; \\ u(2-t) & \text{if } 1 < t \le 2 \end{cases}$$

Show that v is continuous.

Solution: Given that $u:[0,1] \to \mathbb{R}$ is a continuous function. Define $v:[0,2] \to \mathbb{R}$ by

$$v(t) = \begin{cases} u(t) & \text{if } 0 \le t \le 1\\ u(2-t) & \text{if } 1 < t \le 2 \end{cases}$$

Since $t \mapsto 2-t$ is continuous, and composition of two continuous functions is continuous, clearly v is continuous on $[0,1) \cup (1,2]$. We shall show that v is continuous at 1.

$$\lim_{t \to 1^{-}} v(t) = \lim_{t \to 1^{-}} u(t) = u(1) = 1$$
$$\lim_{t \to 1^{+}} v(t) = \lim_{t \to 1^{+}} u(2 - t) = \lim_{t \to 1^{-}} u(t) = u(1) = 1$$

Thus $\lim_{t\to 1} v(t) = 1 = v(1)$. Hence v is continuous at 1.

5. Let $\{b_n\}_{n\geq 1}$ and $\{c_n\}_{n\geq 1}$ be two sequences of real numbers. Define a new sequence $\{a_n\}_{n\geq 1}$ by

$$a_n = \begin{cases} b_n & \text{if } n \text{ is odd} \\ c_n & \text{if } n \text{ is even} \end{cases}$$

Show that if $\{b_n\}, \{c_n\}$ are convergent with the same limit then $\{a_n\}$ is convergent. However, the converse is not true.

Solution: Let $\lim_{n\to\infty} b_n = a = \lim_{n\to\infty} c_n$. We shall show that $\lim_{n\to\infty} a_n = a$. Let $\epsilon > 0$. There exists $N, M \in \mathbb{N}$ such that

$$|b_n - a| < \epsilon$$
 for all $n \ge N, |c_m - a| < \epsilon$ for all $m \ge M$

Let $K = \max\{N, M\}$. Then

$$|b_n - a| < \epsilon$$
 for all $n \ge K$, $|c_n - a| < \epsilon$ for all $n \ge K$

Thus

$$|a_n - a| < \epsilon$$
 for all $n \ge 2K$

Hence $\lim_{n\to\infty} a_n = a$.

The converse is also true: If $\{a_n\}_{n\geq 0}$ converges to a then the sequences $\{b_n\}_{n\geq 0}$ and $\{c_n\}_{n\geq 0}$ also converges to a. Let $\epsilon > 0$. There exists $N \in \mathbb{N}$ such that

$$|a_n - a| < \epsilon$$
 for all $n \ge N$

This implies that

$$|b_n - a| < \epsilon$$
 for all $n \ge N, |c_m - a| < \epsilon$ for all $m \ge N$

Thus $\lim_{n\to\infty} b_n = a = \lim_{n\to\infty} c_n$.

6. Suppose $g: [0,1] \rightarrow [3,5]$ is a continuous bijection. Show that either g is strictly increasing with g(0) = 3, g(1) = 5 or g is strictly decreasing with g(0) = 5, g(1) = 3. Give an example of a discontinuous bijection from [0,1] to [3,5] which is not monotonic.

Solution: Since g is a bijection it is enough to show that g is either strictly increasing or strictly decreasing.

Suppose this is not the case, without loss of generality, there exists $x, y, z \in [0, 1], x < y < z$ such that g(x) < g(y), g(z) < g(y). Since $g(x) \le \max\{g(x), g(z)\} < g(y), g(z) < g(y$

and g is continuous, by intermediate value theorem there exist $u \in [x, y), v \in (y, z]$ such that $g(u) = g(v) = \max\{g(x), g(z)\}$. But $u \neq v$. This is a contradiction to g being injective. Hence g is either strictly increasing or strictly decreasing. Example: Define $f : [0, 1] \rightarrow [3, 5]$ by

$$f(t) = \begin{cases} 2t+3 & \text{if } 0 \le t < \frac{1}{2}, \\ -2t+6 & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Then f is a bijection from [0, 1] to [3, 5] which is not monotonic.

- 7. Find limit and limsup of the following sequences (you should also prove your claims):
 - (a) $\{x_n\}_{n\geq 1}$, with $x_n = (-\frac{1}{2})^n + \frac{1}{n}$ for $n \geq 1$. (b) $\{y_n\}_{n\geq 1}$, with $y_n = (-1)^n \frac{2n^2 + 3n + 1}{5n^2 + 4}$ for $n \geq 1$.

Solution:

(a) Given that $x_n = (-\frac{1}{2})^n + \frac{1}{n}$ for $n \ge 1$. Note that $0 \le x_n \le \frac{2}{n}$ and $\lim_{n \to \infty} \frac{2}{n} = 0$ implies that $\lim_{n \to \infty} x_n = 0$. Hence

$$\liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = \lim_{n \to \infty} x_n = 0$$

(b) Note that $y_n = (-1)^n \frac{2n^2 + 3n + 1}{5n^2 + 4} = (-1)^n \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{5 + \frac{4}{n^2}}$ for all $n \ge 1$. Let $z_n = \frac{2 + \frac{3}{n} + \frac{1}{n^2}}{5 + \frac{4}{n^2}}$. Then $\lim_{n \to \infty} z_n = \frac{2}{5}$ and $y_n = (-1)^n z_n$. Thus $\lim_{n \to \infty} y_{2n+1} = -\frac{2}{5}$ and $\lim_{n \to \infty} y_{2n} = \frac{2}{5}$. Note that

$$\inf_{k \ge m} \{y_k\} = \inf_{2k+1 \ge m} \{y_{2k+1}\} \text{ and } \sup_{k \ge m} \{y_k\} = \sup_{2k \ge m} \{y_{2k}\}$$

Hence

$$\liminf_{n \to \infty} y_n = \lim_{m \to \infty} \inf_{k \ge m} \{y_k\} = \lim_{m \to \infty} \inf_{2k+1 \ge m} \{y_{2k+1}\} = \liminf_{n \to \infty} y_{2n+1} = \lim_{n \to \infty} y_{2n+1} = -\frac{2}{5}$$
$$\limsup_{n \to \infty} y_n = \lim_{m \to \infty} \sup_{k \ge m} \{y_k\} = \lim_{m \to \infty} \sup_{2k \ge m} \{y_{2k}\} = \limsup_{n \to \infty} y_{2n+1} = \lim_{n \to \infty} y_{2n} = \frac{2}{5}$$